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SUMMARY

Multidimensional positive de�nite advection transport algorithm (MPDATA) was proposed in the early
eighties as a simple positive-de�nite advection scheme with small implicit di�usion, for evaluating the
advection of water-substance constituents in atmospheric cloud models. Over the two decades, MPDATA
evolved from an advection scheme into a class of generalized transport algorithms that expand beyond
advective transport to alternate PDEs and complete �uid models with a wide range of underlying govern-
ing equations. Recently, MPDATA has attracted attention in the context of several mutually-bene�cial
developments such as (i) quanti�cation of MPDATA implicit turbulence modelling capability in the
spirit of monotonically integrated large eddy simulations (MILES), (ii) extensions to �ow solvers cast
in generalized time-dependent curvilinear coordinates, and (iii) unstructured-grid formulations. The aim
of this paper is to assist the special issue on MPDATA methods for �uids by providing an up to date
comprehensive review of the approach, including the underlying concepts, principles of implementation,
and guidance to the accumulated literature. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The hydrodynamic description of nature is omnipresent from quantum mechanics [1] to astro-
physics [2]. The equations describing �uid �ows may take a variety of forms, depending upon
the physical assumptions involved. However, from the perspective of numerical approximations
they may be often reduced to the symbolic form of a generalized transport equation
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where G=G(x; t)¿0, �=�(x; t)¿0, v= v(x; t), and R=R(x; t) are assumed to be known
functions of the coordinates. A scalar function G is introduced to admit curvilinearity of
the coordinates, so it may play the role of the Jacobian of the coordinate transformation
from a physical (xP; tP) to an arbitrary time-dependent curvilinear framework (x; t) [3–5].
Consequently, v≡ ẋ should be viewed as the advecting contravariant velocity in the (x; t)
frame. Because � symbolizes a generalized �uid density,‡ the dependent variable � denotes
some �uid property per unit mass (i.e. a mixing-ratio as opposed to a density type variable);
e.g. a component of physical velocity (viz. momentum per unit of mass) or speci�c entropy.
On the rhs, R combines all forcings and=or sources. For example, when (1) represents a
momentum equation, then R includes the pressure gradient component associated with the
velocity component �. In general, both v and R will be functionals of the dependent variables.
A special case of (1) is �≡ 1 and R≡ 0, for which (1) represents the mass-continuity

equation. The latter manipulated with (1) gives an evolution-equation

d�
dt
=R (2)

where d=dt≡ @=@t+v · ∇. For R≡ 0, the homogeneous equation (2) speci�es the invariance of
� along �ow trajectories. In particular, it conveys that advection alone can change neither the
sign nor the extrema of a mixing-ratio variable. Due to the positivity of �, the sign preserva-
tion property of advection extends to density-type variables; while the preservation of extrema
requires solenoidal �ows, i.e. G−1(G;t +∇ ·Gv)≡ 0. The sign-preservation property is espe-
cially important, since, together with the conservation form in (1), it implies that the domain
integral of �2 should remain uniformly bounded for all times, subject to contributions from
imposed boundary conditions. These elementary properties of advection underline solutions to
complete �uid problems, yet they are di�cult to attain using numerical approximations. This
is illustrated in Figure 1 that shows the numerical solution to constant-coe�cient advection—
�; t +c�; x =0—on periodic domain, using the classical second-order-accurate centred-in-time-
and-space leapfrog scheme. While the analytic solution �(x; t)=�(x−ct; 0) merely translates
the initial signal,§ the resulting numerical solution is distorted and oscillatory.
For elementary advection, preserving the extrema or sign of transported variables is some-

what academic, since spurious distortions do not necessarily imply poor overall accuracy.
For substantiation, Figure 2 complements the second-order-accurate centered-in-time-and-space
solution in Figure 1 with the fourth-order-accurate forward-in-time (viz. time uncentred)
scheme of Tremback et al. [6], a representative of dissipative Lax–Wendro� (alias Taylor–
Galerkin, in the �nite-element literature) algorithms. In the numerical simulation of �uids,
however, monotone or sign-preserving advection may not be an option, but rather a neces-
sary prerequisite of solution realizability (e.g. for reactive or multi-phase �ows). Alas, linear
schemes that guarantee smooth solutions having the overall accuracy of second- and higher-
order methods do not exist [7]. Consequently, the alternative is either to accept �rst-order
methods with their notorious implicit di�usivity, cf. Figure 3, or to abandon the premise of
linearity, and complicate the problem by approximating even the simplest constant-coe�cient
advection with an elaborate nonlinear scheme.

‡For example, if (1) is an archetype of a shallow water system, then � will be a local depth of the �uid.
§The half-width of a cosine-shaped function is resolved with 12 intervals �x of a uniform grid composed of 500
cells; c�t=�x=0:5, and the solution shown in Figure 1 is after 1600 time steps �t.
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Figure 1. Constant-coe�cient numerical advection with the leapfrog scheme. Flow is from left
to right, and the solution is downwind of the initial condition.

Figure 2. As in Figure 1 but for a fourth-order-accurate Lax–Wendro� scheme.

Multidimensional positive de�nite advection transport algorithm (MPDATA) [8, 9] is
a family of nonlinear �nite-volume advection algorithms akin to Lax–Wendro� schemes.
Recall that a second-order-accurate one-step Lax–Wendro� scheme can be derived from the
�rst-order-accurate upwind (alias upstream or donor cell) scheme by subtracting from the rhs
a space-centred representation of the �rst-order error. In MPDATA, however, such a com-
pensation is based on a nonlinear estimate of the truncation error, and attained by iterative
application of upwind di�erencing. In the corrective iteration(s) the leading truncation error
term (of the upwind scheme) is cast in the form of an advective �ux, de�ned as the product of
the current solution iterate and a suitably de�ned velocity �eld; see Figure 4, for illustration.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1123–1144



1126 P. K. SMOLARKIEWICZ

Figure 3. As in Figure 1 but for the �rst-order-accurate upwind scheme.

Figure 4. As in Figure 1 but for a second-order-accurate MPDATA scheme.

The theoretical foundation of MPDATA—the modi�ed equation approach—facilitates
extending the scheme to the generalized transport problem in (1). Since the origin of
MPDATA in the early eighties, a variety of options have been documented that extend
MPDATA to curvilinear frameworks, full monotonicity preservation, third-order accuracy,
and variable sign �elds (such as momentum). MPDATA was generalized to a complete �uid
solver in the early nineties [10]. In analysing the truncation error of approximations to (1), one
�nds error terms that depend on the interaction of advection with the forcing. Many imple-
mentations of nonoscillatory algorithms treat advection separately from the forcings, leaving
this error uncompensated, thereby reducing the order of accuracy of the solution and poten-
tially leading to oscillations and even instability [11]. In MPDATA, this error is compensated
by e�ectively integrating the forcing terms along a �ow trajectory rather than at a grid point.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1123–1144



MPDATA: AN OVERVIEW 1127

A comprehensive review of earlier MPDATA developments, including both the underlying
concepts and the implementation details, can be found in Reference [12].
Generally speaking, MPDATA belongs to the class of nonoscillatory Lax–Wendro� schemes

that includes such classical algorithms as FCT [13], TVD [14], and ENO [15]. However,
MPDATA is qualitatively di�erent from these other methods, which were developed primar-
ily in the area of high-speed �ows to suppress spurious oscillations of Lax–Wendro� schemes
for hyperbolic conservation laws. MPDATA was originally developed for meteorological
applications—viz. high Reynolds’ number, low Mach number �ows—to reduce the implicit
viscosity of the upwind scheme (commonly used for nonnegative thermodynamic �elds in
early cloud models) while retaining virtues such as positivity, low phase error, and simplicity
of upstream di�erencing. As a result of its heritage, MPDATA’s focus is on sign preserving
multidimensional advection rather than on monotone solutions of hyperbolic conservation laws
in one spatial dimension. Unlike the TVD and ENO schemes, which employ one-dimensional
constructions to limit the scalar �ux component, MPDATA e�ectively limits the magnitude
of the vector velocity and so is naturally unsplit. In principle, any of these schemes can be
adapted for multidimensional �ows of all speeds. However, MPDATA appears to be the �rst
Lax–Wendro� type of approach employed consistently (i.e. for all dependent variables) and
successfully throughout a range of �uid models from biomechanics, through geophysics, to
solar physics, and involving scales of motion from micro to stellar.
In recent years, a series of studies [16–20] was devoted to quantifying MPDATA’s

implicit turbulence modelling capability—in the spirit of monotonically integrated large eddy
simulations (MILES)—observed in numerous simulations of high Reynolds number �ows
throughout a range of scales and problems, from breaking of gravity waves in the
middle atmosphere to turbulent solar convection [21–25]. Gaining a deeper insight into im-
plicit turbulence modelling is important, as MILES greatly facilitates turbulent-�ow studies by
obviating the evaluation of the viscous stress—a formidable task in generalized curvilinear
frameworks [26]. Unlike most nonoscillatory methods, MPDATA is based directly on the
convexity of upwind advection¶ rather than on the idea of �ux limiting. The iterative appli-
cation of upwinding in MPDATA has important physical consequences. In particular, because
the upwind scheme �lters high frequencies on the grid, and each subsequent step reverses
the dissipative error of the preceding step, MPDATA is reminiscent of generalized simi-
larity models, where an estimate of the un�ltered Navier–Stokes velocity (which enters the
subgrid-scale stress tensor) is obtained by an approximate inversion of the �ltering operation;
cf. References [17, 28].
MPDATA has proven successful in simulations of geophysical �ows using single block,

structured, topologically rectangular meshes, while employing di�eomorphic mappings to
accommodate time-dependent curvilinear domains [3, 4, 24, 26]. Its potential for unstructured-
grid approximations has been realized only recently. Bacon et al. [29] pioneered with an
implementation of MPDATA advection in the multiscale environmental model OMEGA for
operational forecast of weather and pollutant dispersion. Independently, Margolin and Shashkov
[30] drew inspiration from the MPDATA approach to develop a second-order, sign-preserving

¶Numerical solutions remain bounded by the surrounding local values of the preceding time step, given a solenoidal
advecting �ow and an adequately limited time step; for arbitrary �ow, the weaker condition of sign preserva-
tion can be assured [27].

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1123–1144



1128 P. K. SMOLARKIEWICZ

conservative interpolation for remapping two-dimensional arbitrary Lagrangian–Eulerian (ALE)
grids. Aiming at a broad range of applications involving complex, multiply-connected domains
and inhomogeneous �ows, Smolarkiewicz and Szmelter [27, 31] developed a general, compact
edge-based fully unstructured-mesh formulation of MPDATA and extended it to high-speed
aerodynamics �ows [32].
The goal of this paper is to assist the special issue on the MPDATA methods for �uids

that includes a collection of articles devoted to diverse adaptations of the MPDATA approach
and its derivatives. With this goal in mind, the remaining part of this paper is organized
as follows. The next section summarizes the theoretical foundations of MPDATA schemes
in both Cartesian- and unstructured-grid formulations; because the former schemes were
reviewed earlier [12], more attention is given to MPDATA for general grids. The compu-
tational stability and accuracy of MPDATA are discussed in Section 3. Section 4 reviews
extensions of MPDATA important for designing complete �uid models. Theoretical consider-
ations are illustrated with idealized examples, preparing the ground for advanced applications
discussed in other papers.

2. BASIC SCHEME

2.1. Cartesian-mesh perspective

In order to convey the key idea underlying the MPDATA approach, it is instructive to assume
solenoidal stationary �ow, and begin with the 1D �ux-form advection equation

@�
@t
=− @

@x
(u�) (3)

where u=const is the �ow velocity and � a nonnegative scalar �eld. A general donor-cell
approximation to (3) can be written in �ux form

�n+1i =�ni − [F(�ni ;�ni+1; Ui+1=2)− F(�ni−1;�ni ; Ui−1=2)] (4)

where the �ux function F is de�ned in terms of the local Courant number U by

F(�L;�R; U )≡ [U ]+�L + [U ]−�R

U ≡ u�t
�x
; [U ]+ ≡ 0:5(U + |U |); [U ]− ≡ 0:5(U − |U |)

(5)

The integer and half-integer indices correspond to the cell centres and cell walls, respectively,
and [U ]+ and [U ]− are the nonnegative and nonpositive parts of the Courant number, re-
spectively. A simple truncation error analysis‖ reveals that the �rst-order-accurate scheme in
(4) approximates, to second-order in �x and �t, the advection–di�usion equation

@�
@t
=− @

@x
(u�)− @

@x

(
−K @�

@x

)
(6)

‖All dependent variables are expanded in a Taylor series about a common point, say (xi; tn), and all temporal
derivatives are expressed in terms of the spatial derivatives using the governing equation.
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where

K =
(�x)2

2�t
(|U | −U 2) (7)

The key idea of MPDATA is to rewrite the Fickian �ux in the error term on the rhs of
(6) as a convective �ux −K(@�=@x)≡ ud�, thereby de�ning the di�usive pseudo velocity

ud ≡ − (�x)2

2�t
(|U | −U 2)

1
�
@�
@x

(8)

In order to subsequently compensate the �rst-order error of (4), one again uses the donor-
cell scheme but with the antidi�usive velocity ũ=− ud in lieu of u and with the value of
�n+1 already updated in (4) in lieu of �n. Choosing a suitable approximation of the ratio
(1=�)(@�=@x) in (8), e.g.

1
�
@�
@x

≈ 2
�x

�n+1i+1 −�n+1i

�n+1i+1 + �
n+1
i + �

(9)

assures the stability of the corrective iteration for arbitrary small �¿0 and |U |61.
Extending MPDATA to multiple dimensions is straightforward, except that one needs to

account for the cross-derivative terms that appear in the truncation error of the donor-cell
scheme. For example, in 2D the elementary advection equation (3) becomes

@�
@t
=− @

@x
(u�)− @

@y
(v�) (10)

and its donor-cell approximation

�n+1i; j =�
n
i; j − [F(�ni; j ;�ni+1; j ; Ui+1=2; j)− F(�ni−1; j ;�ni; j ; Ui−1=2; j)]

−[F(�ni; j ;�ni; j+1; Vi; j+1=2)− F(�ni; j−1;�ni; j ; Vi; j−1=2)] (11)

where now U and V are the dimensionless Courant numbers

U ≡ u�t
�x

and V ≡ v�t
�y

(12)

and the �ux function F has been de�ned in (5). Note that in contrast to 1D, solenoidal �ow
does not imply uniform velocity. The truncation error analysis reveals that (11) approximates
to second-order the advection–di�usion equation

@�
@t
=− @

@x
(u�)− @

@y
(v�)

+
(�x)2

2�t
(|U | −U 2)

@2�
@x2

+
(�y)2

2�t
(|V | − V 2)@

2�
@y2

− UV�x�y
�t

@2�
@x@y

(13)
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As in 1D, the di�usive �uxes are cast in convective form, thereby de�ning antidi�usive pseudo
velocities in the x and y directions; e.g.

ũ=
(�x)2

2�t
(|U | −U 2)

1
�
@�
@x

− UV�x�y
2�t

1
�
@�
@y

ṽ=
(�y)2

2�t
(|V | − V 2) 1

�
@�
@y

− UV�x�y
2�t

1
�
@�
@x

(14)

By selecting uniformly bounded approximations to the ratios (1=�)∇�, one assures the sta-
bility of the corrective iteration.

2.2. Unstructured-grid formulation

In an arbitrary �nite-volume framework, formal derivation of MPDATA [27, 31] is some-
what more di�cult than for Cartesian meshes. For example, distinguishing between single
and multiple dimensions or assuming constant velocity loses its instructional appeal, since
unstructured grid dictates anisotropy and inhomogeneity of local Courant numbers even for
uniform �ows. In spite of increased mathematical complexity, the unstructured-grid formalism
is more compact, while more general. In particular, we consider now a Euclidean advection
problem

@�
@t
=− ∇ · (v�) (15)

where v is an arbitrary stationary �ow, and � at t=0 is assumed nonnegative.
To aid in explaining the notation, Figure 5 shows a face of an arbitrary computational

cell containing vertex i, together with the edge connecting vertex i with one of its immediate
neighbours j; there are l(i) edges connecting the vertex i with its neighbours. Sj refers both to
the face per se and to its surface area. Integrating (15) over the cell volume (while employing
the Gauss divergence theorem) results in

�n+1i =�ni − �t
Vi

l(i)∑
j=1
F⊥
j Sj (16)

This is exact, given �n+1i and �ni are interpreted as the mean values of � within the volume
Vi of the cell containing vertex i, while F⊥

j is interpreted as the mean normal �ux through the

Figure 5. Schematic of an edge piercing a face of an arbitrary 3D cell.
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cell face Sj averaged over temporal increment �t. The approximation begins with specifying
�uxes F⊥

j in terms of data available on the grid. Analogous to the Cartesian donor-cell scheme
(4)–(5), an arbitrary-grid �nite-volume upwind assumes

F⊥
j =[v

⊥
j ]
+�ni + [v

⊥
j ]

−�nj (17)

where normal velocity v⊥ ≡ v · n is evaluated at the face Sj. The nonnegative=nonpositive parts
of v⊥j always coincide with out�ow=in�ow from the ith cell.
The leading truncation error of the unstructured-grid upwind di�erencing is determined by

expanding all discrete data into a Taylor series in time and space, about the intermediate time
tn+1=2 and point sj where the edge pierces the face, and then representing higher-order temporal
derivatives in terms of spatial derivatives [27, 31]. In e�ect, the upwind �ux in (17) becomes
decomposed into a time-centred �ux through the face and a �rst-order truncation-error �ux of
a predominantly Fickian character

F⊥
j = v

⊥
j �|n+1=2sj + Error

Error =−0:5|v⊥j | @�
@r

∣∣∣∣
∗

sj

(rj − ri) + 0:5v⊥j
@�
@r

∣∣∣∣
∗

sj

(ri − 2rsj + rj)

+0:5�tv⊥j (v∇�)|∗sj + 0:5�tv⊥j (�∇ · v)|∗sj + O(�r2; �t2; �t�r) (18)

where r refers to the parametric description of the edge r(�)= ri + �(rj − ri); � ∈ [0; 1], and
the asterisk superscripts in Error symbolize either time level n, n+ 1=2, or n+ 1, as any of
these can be considered without a�ecting the form or the order of Error.
As with Cartesian meshes, unstructured-grid MPDATA consists of a sequence of upwind

(16)–(17) iterations. In the �rst iteration, the input �eld and �ow velocity, � and v, are
taken from the preceding time step tn. In the second (corrective) iteration, the input �eld �
is the result of the preceding upwind iteration and the pseudo velocity ṽ := − (1=�)Error. In
particular,

ṽ⊥j =0:5|v⊥j |
(
1
�
@�
@r

)∣∣∣∣
∗

sj

(rj − ri)− 0:5v⊥j
(
1
�
@�
@r

)∣∣∣∣
∗

sj

(ri − 2rsj + rj)

−0:5�tv⊥j
(
v
1
�

∇�
)∣∣∣∣

∗

sj

− 0:5�tv⊥j (∇ · v)|∗sj (19)

with the asterisk now indicating the �rst-order estimate of the n+1 solution from the preceding
upwind iteration. In principle, the entire process of estimating the residual error and the
associated compensation can be continued, iteration after iteration, reducing the magnitude of
the truncation error—reducing the formal order of the error requires third-order analysis to
begin with, cf. Reference [33]—yet in practice one corrective iteration su�ces for recovering
the overall accuracy of time-space centred schemes.
The procedure outlined above conveys the essence of the arbitrary-grid �nite-volume

MPDATA in abstraction from any speci�c data distribution and details of the discrete
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representation of di�erential operators. Although derived for edges, the general form of the
pseudo velocity (19) applies to many �nite volume schemes with various cell arrangements.
In particular, (19) indicates that some speci�cations of control volumes may be optimal for
MPDATA because they simplify the leading truncation error of the upwind scheme and reduce
the computational e�ort associated with evaluating the anti-truncation-error pseudo velocity.
In particular, the median-dual �nite-volume approach (see Reference [34] for a comprehensive
discussion) constructs the control volume associated with the vertex i by joining the centres
of polyhedra cells and midpoints of the edges surrounding the vertex i, Figure 6; thereby
cancelling out the mesh skewness error in the second term on the rhs of (19).
Having de�ned the mesh, all geometric elements such as cell volumes, cell face areas,

and normals are evaluated from elementary vector calculus. Hereafter, Sj ≡ Sjnj symbolizes
the oriented surface element with nj denoting the normal. Because normal �uxes in (16)
are always proportional to normal velocities vj · nj, the face surface area Sj= ‖ Sj ‖ can be
conveniently incorporated in the de�nition of the normal velocity v⊥j := vj ·Sj while setting
Sj ≡ 1 in all relevant formulae. Consequently, the surface-area-weighted advective velocities
normal to the cell face Sj are evaluated at cell faces as

v⊥j =Sj · 0:5[vi + vj] (20)

whereupon the surface-weighted antidi�usive pseudo velocity can be approximated as

v̂⊥j = |v⊥j | �∗
j −�∗

i

�∗
j +�∗

i + �
− �t
2
v⊥j

(
v · ∇�∗

�∗ +∇ · v
)
Sj

(21)

where �∗ denotes the result after the generic upwind iteration, and � is a small constant,
e.g. 10−10, assuring that the denominator does not vanish when �∗

j =�
∗
i =0. The factor in

brackets on the rhs of (21) is written symbolically for conciseness. Because the complete
technical exposition is elaborate and given in Reference [27], here we only comment on its
two principal aspects. First, �∗ denotes the arithmetic average of �∗s taken from the grid
points employed for evaluating ∇�∗, thereby exploiting the elementary boundedness property
|∑±�=∑�|61 of positive-de�nite scalar �elds, important for MPDATA stability. Second,
following Reference [29], the weighted convective derivative ∼ v · (∇�∗=�∗) is evaluated
entirely in terms of Cartesian components. This departs from the Cartesian-grid MPDATA in

Figure 6. The edge-based median-dual approach. The edge connecting vertices i and j
pierces the face Sj of a 3D computational cell surrounding vertex i. Open circles represent

centres of polyhydra cells referred to in the text.
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Section 2.1, where, due to the mesh orthogonality, the ‘diagonal’ elements of v⊥j v · (∇�∗=�∗)
were combined into ∼ (|U | −U 2) and ∼ (|V | − V 2) terms in (14). In a general �nite-volume
framework, the latter would require an additional e�ort associated with decomposing the
complete convective derivative into derivatives normal and tangential to cell faces. While
it is unnecessary for standard MPDATA schemes with a single corrective iteration, such a
development may become essential for multiple upwind passes or higher-order options; cf.
Reference [33] for additional insights.

3. ACCURACY, STABILITY, AND BENCHMARK RESULTS

The basic MPDATA schemes described in Sections 2.1 and 2.2 are constructed from the
classical upwind scheme, which is consistent, conditionally stable, and �rst-order accurate.
These properties, together with the algorithm’s design, predetermine the consistency, stability,
and accuracy of MPDATA [9]. In particular, because the pseudo velocities (8), (14), or (19)
tend to zero as the spatial and temporal increments decrease, the consistency of MPDATA
is implied by that of upwind. Similarly, because the corrective upwind iteration compensates
the �rst-order leading error of the preceding upwind step, with accuracy at least to �rst-order,
the uncompensated portion of the upwind error remains at second-order. The latter su�ces
to increase the formal accuracy order of upwinding on a Cartesian-mesh—second- and third-
order asymptotic convergence rates of various MPDATA options have been documented for
Cartesian meshes, cf. Reference [12] and references therein. For arbitrary meshes, however,
this is not necessarily the case, since the formal accuracy of the centred scheme—a target
of the MPDATA derivation, in (18)—is not mesh independent [35]. Notwithstanding, Bacon
et al. [29] demonstrated second-order convergence of their cell-centred unstructured MPDATA
using a standard ‘rotating-cone’ benchmark while invoking intensive local mesh re�nement.
Furthermore, Smolarkiewicz and Szmelter [27] have shown second-order accuracy for their
edge-based formulation on both quality and skewed unstructured median-dual grids; see also
Reference [36] in the same issue for an illustration and further discussion.
The stability of MPDATA also follows that of the upwind scheme, but there is a subtlety.

Following Reference [27], we note �rst that

∀i
l(i)∑
j=1
[Uj]+61; Uj :=

v⊥j Sj�t
Vi

(22)

su�ces for the upwind advection in (16)–(17) to preserve the nonnegative=nonpositive char-
acter of the transported �elds, thereby amounting to satisfaction of the nonlinear stability
condition; cf. Reference [16] for a discussion. For solenoidal �ows, (22) su�ces for solution
convexity, and reduces to

l(i)∑
j=1

|Uj|62 (23)

a stability condition familiar from the �nite-di�erence literature, e.g. (4) in Reference [9].
Stability proofs for MPDATA rely on showing that, for each corrective iteration, local Courant
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numbers are bounded by the local Courant numbers of the preceding iteration. In one spatial
dimension, (21) together with the stability and positivity of the original upwind scheme
implies

|Û j|6|Uj| − (Uj)26|Uj| (24)

so that the stability of upwind ensures the stability of MPDATA. A similar result occurs
in multidimensional problems, but the presence of cross-derivatives makes a formal proof
di�cult. In Reference [9], it has been proven that the stability of upwind assures the stability
of the Cartesian-mesh MPDATA, but with the caveat that the time step used is smaller
than that allowed for the upwind alone by the factor 2−1=2 and 2−1, in 2 and 3 spatial
dimensions, respectively. This particular time step requirement follows from assuming a worst
case scenario where the velocity components �ip sign across the cell. Because the latter is
a rare event in CFD applications, the heuristic limit recommended for all structured-mesh
MPDATA extensions has been the same as that for the upwind scheme. A similar result has
been argued and veri�ed for the unstructured-mesh formulation [27].
We illustrate the performance of basic MPDATA using a standard solid-body rotation test

[8, 9, 12]. A cone of base radius 15 and height 4, centred initially at (75; 50), is rotating
counter-clockwise around the centre of a [0; 100]× [0; 100] domain with angular velocity
!=0:1. Figure 7 displays the isolines of the exact result and of two MPDATA solutions
after 6 rotations. These results were generated with the edge-based unstructured-grid formu-
lation of MPDATA [27, 31]. The solution in the central plate uses 104 square cells, whereas
the solution in the right plate uses a triangular grid with a similar number and distribution of
points. For reference, all parameters of the test and of the display are identical to those in
Figure 1 in Reference [12], which showed similar results generated with the Cartesian-mesh
formulation of MPDATA. The solution using square cells is indistinguishable from the corre-
sponding result in Figure 1 of Reference [12]—a demonstration of the generality and re�exivity
of the unstructured grid formulation. The accuracy of the results displayed is quanti�ed in
Table I, where the corresponding values for the classical upwind and centred-in-time-and-space
leapfrog schemes are included for the sake of reference.

Figure 7. Isolines of a cone advected through six rotations around the centre of the lower frame (only a
quarter of the domain is shown). The contour interval is 0.25, and the zero contour line is not shown.
Left plate, the analytic solution; centre plate, the �nite-volume MPDATA on a regular square-mesh;

right plate, as in the centre but for a triangular mesh.
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Table I. Error norms for solid-body rotation test using Cartesian and unstructured grid formulations of
MPDATA; the classical upwind and centred-in-time-and-space leapfrog schemes are included.

Scheme Formulation (grid) Max Min L2

MPDATA Cartesian 2.18 0.00 0:47× 10−3

MPDATA Unstructured (squares) 2.18 0.00 0:47× 10−3

MPDATA Unstructured (triangles) 2.19 0.00 0:47× 10−3

upwind Cartesian 0.27 0.00 1:21× 10−3

upwind Unstructured (squares) 0.28 0.00 1:04× 10−3

upwind Unstructured (triangles) 0.25 0.00 1:06× 10−3

Leapfrog Cartesian 3.16 −0.62 0:62× 10−3

Leapfrog Unstructured (squares) 3.11 −0.67 0:64× 10−3

Leapfrog Unstructured (triangles) 3.11 −0.69 0:65× 10−3

4. EXTENSIONS TO FLOW SOLVERS

The basic MPDATA scheme can be supplemented by numerous extensions that either enhance
the accuracy and generality of the MPDATA advection, or expand its capabilities beyond
advective transport to alternate PDEs and to complete �ow solvers; cf. Reference [12] for a
review. Here, we summarize a few selected extensions that are of particular importance for
many applications, and are routinely employed in �ow simulations discussed in other papers
collected in the special issue.

4.1. Generalized transport equation

It is instructive to discuss selected MPDATA options in terms of the reduced generalized
transport equation (1)

@G�
@t

+∇ · (v�)=GR (25)

where the density � has been absorbed either in G, or in � and R. The latter distinction
depends on the elastic versus inelastic character of the governing �uid equations,∗∗ and de-
termines the interpretation of � as a density or mixing-ratio type variable. This freedom of
interpretation bene�ts the e�cacy of Taylor-series based �ow solvers such as MPDATA. For
example, in inelastic systems it su�ces to cancel truncation errors depending on the �ow
divergence, regardless of the complexity of the accompanying mass continuity equation [24];
whereas in elastic systems it assures consistency of advective transport for all dependent
variables [11]. Depending upon the de�nition of G, v≡Gẋ should be viewed as either a
generalized ‘advective’ velocity or a momentum vector.
In order to design a fully second-order MPDATA �ow solver, it is important to derive the

leading truncation error terms for (25) rather than to hastily combine the basic scheme with,

∗∗The terms elastic and inelastic are used to distinguish between a compressible versus an incompressible character
of the PDE used to describe the �ow. For example, consider the shallow water equations—a long-wave
approximation for incompressible strati�ed �ows—that are mathematically akin to the compressible-�ow Euler
equations.
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e.g. a time-centred representation of the rhs forcing. Such derivations [12, 24] reveal terms
that depend on the interaction of the advection with the forcing, and on the coordinate trans-
formation as well as on the time dependence of the �ow. Because these terms are rooted in
the uncentred time-discretization, they are independent of the spatial discretization, whereupon
all related developments (cf. References [12, 24] for a discussion) are common to structured-
and unstructured-grid frameworks. For example, discretizing (25) in time as

Gn+1�n+1 −Gn�n
�t

+∇ · (vn+1=2�n)= (GR)n+1=2 (26)

leads to the modi�ed equation

@G�
@t

+∇ · (v�)=GR− ∇ ·
[
�t
2
G−1v(v · ∇�) + �t

2
G−1

(
@G
@t
+∇ · v

)
v�

]

+∇ ·
(
�t
2
vR

)
+ O(�t2) (27)

Specifying the time levels of both the advective velocity and the forcing term as n+1=2 in (26)
eliminates O(�t) truncation errors proportional to their temporal derivatives [12]. Although any
O(�t2) approximations to vn+1=2 and Rn+1=2 will su�ce for compensating these error terms, the
preference depends on the elastic vs inelastic character of the governing system. For example,
in inelastic systems a linearly extrapolated vn+1=2 readily satis�es the mass continuity equation;
whereas in elastic systems, a nonlinear extrapolation consistent with the governing equations
of motion (viz. predictor) admits larger �t [11].
The second term on the rhs of (27) is a generalization of the quadratic (in velocity)

error terms that appear throughout (7), (13) and (18); its compensation is within the realm
of the basic MPDATA, cf. (8), (14) and (19). Its second component is multiplicative of
the �ow divergence in elastic systems, and multiplicative of the mass continuity equation in
inelastic systems; both accounting for the possible time dependence of curvilinear coordinates.
Because mass continuity in numerical models is satis�ed to (at least) the truncation error, this
second component is conveniently negligible in inelastic systems; e.g. facilitating dynamic
mesh adaptivity. While a similarly convenient temporal discretization is conceivable for the
elastic case, to our knowledge, it has not been accomplished yet with MPDATA.
The term on the rhs of (27) proportional to the convective �ux of R couples the advection

and forcing. Many implementations of nonoscillatory algorithms treat advection separately
from the forcings, relying on experience with centred-in-time-and-space methods. However,
leaving this error uncompensated not only reduces the order of accuracy of the solution but
also ampli�es oscillations and can even lead to instability [11]. To illustrate, we slightly
modify the constant-coe�cient advection example from the introduction. Consider a system
composed of two advection equations coupled by restoring forces

�; t +c�; x =!�; �; t +c�; x =−!� (28)

with �=0 at t=0. This is a minimalistic model of a harmonic oscillator that translates with
velocity c and transforms � in �, and vice versa, with frequency !=2�=(400�t), Figure 8.
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Figure 8. Solution sequence over t=600�t, for � (solid line) and � (dashed line) dependent variables
of the translating oscillator in (28); otherwise as in Figure 4.

Figure 9. As in Figure 4 but for the translating oscillator in (28), evaluated with (29).

A naive integral of (28) can be compactly written as

�n+1i =�∗
i + �t!0:5(�

n
i +�

n+1
i ); �n+1i =�∗

i − �t!0:5(�ni +�n+1i ) (29)

where (:)∗i ≡Mi(:; c) symbolizes the output from a homogeneous advection MPDATA module.
Figure 9 displays the solution—implied in the implicit algebraic system (29)—after t=1600�t,
as in Figure 4. While the analytic solution requires repetition of the initial shape, numerical
results exhibit spurious decoupling of the two components. Despite the second-order advec-
tion and the trapezoidal integral of the rhs, the solution still su�ers from �rst-order error
proportional to the convective �ux of the rhs. A trivial (programming-wise) alteration of the
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algorithm in (29)

�n+1i =�∗
i + �t!0:5�

n+1
i ; �n+1i =�∗

i − �t!0:5�n+1i (30)

with �∗
i ≡Mi(�n + �t!0:5�n; c) and �∗

i ≡Mi(�n − �t!0:5�n; c)—a paraphrase of the Strang
splitting [37]—has a profound impact on the quality of the result. It e�ectively compensates
the coupling error, producing a solution indistinguishable from that in Figure 4.†† This is
because at each grid point

M(�n + �t!0:5�n; c)=�n + �t!0:5�n − �tc�; x − �tc(�t!0:5�); x +HOT (31)

where (:) symbolizes the integral over �t, and HOT denotes higher order terms. The second
term on the rhs of (31) combines with the second term on the rhs of the �rst equation in
(30) to give the trapezoidal integral of the forcing, and the fourth term is the negative of
the coupling error term, with accuracy up to the higher order terms. An analogous argument
holds for �.
In a time–space continuum, advection may be interpreted as a remapping of the transported

�eld �(x; t) to the feet (xo(x; t); to) of �ow trajectories arriving at (x; t) points of the con-
tinuum. Consequently, advecting in (30) the �eld plus half of the forcing (× �t) amounts to
integrating the rhs of the equations along �ow trajectories—consistent with the Lagrangian
form (2) of the generalized transport problem—using the trapezoidal rule; see Reference [11]
and references therein, for further discussion. Extending (30) to the more general form (25)
results in

�n+1i =
Gni
Gn+1i

Mi(�
n + 0:5�tRn; vn+1=2; Gn) + 0:5�tRn+1i (32)

the principal algorithm of the high-performance 3D program EULAG‡‡ for simulating
rotating, strati�ed �ows in complex geometries, on scales from micro to planetary [24]. The
only two extensions of the basic MPDATA required for (32) are: (i) the G−1 factors in the
antidi�usive velocity terms indicated in (27); and (ii) a generalized form of the antidi�usive
velocity permitting the advection of �elds of variable sign such as momenta. The approach
adopted in (30) and (32) for compensating the ∼ �t∇ · (vR) error term in (27) is e�ective for
a broad range of �uid models, but by no means exclusive; for discussion and other options
see References [11, 12] and references therein.

4.2. Transporting �elds of variable sign

Until now, we have assumed that the transported �eld � is exclusively either nonnegative or
nonpositive—in fact, only �¿0 was addressed, but all formulae hold for �60, given �¡0
in (9) and (21). This assumption is important for stability, accuracy, and in general, for the
design of MPDATA. However, it enters MPDATA schemes explicitly only in the pseudo
velocity formulae, in the ∼��=∑� terms of the discrete approximations to the components
of ∼�−1∇� ratios—cf. (8), (14), and (19). These terms are bounded when � is of constant

††Indeed, the algorithm in (30) has been employed to produce the solution sequence in Figure 8.
‡‡The name EULAG [22] alludes to the capability to solve the inelastic �uid equations in either an Eulerian (�ux
form [11]) or a Lagrangian (advective form [38]) framework.
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sign, but can lead to arbitrarily large pseudo velocities and unstable schemes when � changes
sign. MPDATA can be extended to the transport of variable-sign �elds in several ways. Below
we outline two extensions that have proven useful in applications.
The simplest and most common way is to replace all �s in (8), (14), and (19) with |�|s;

exploiting the relationship§§

1
�
@�
@x

≡ 1
2�

1
(�2)�

@(�2)�

@x

∣∣∣∣
�=1=2

=
1

|�|
@|�|
@x

(33)

The results are, for all practical purposes, insensitive to the value of �; however, �=1=2 is
the optimal choice as it only requires replacing � with |�| in the pseudo velocity formulae
derived for the constant-sign �elds and is, furthermore, computationally the most e�cient. This
approach has been employed in the translating-oscillator example in the preceding
subsection.
An alternate approach exploits the mass continuity equation (Section 4 in Reference [39]).

Multiplying (25)—with �≡ � being the �uid density (elastic systems), or with �≡ �≡ 1 and
a steady reference density included in G (inelastic systems)—by an arbitrary constant c and
adding the resulting equation to (25) leads to

@G(� + c�)
@t

+∇ · (v(� + c�))=GR (34)

which illustrates yet another degree of freedom in MPDATA. The arbitrary constant c can be
chosen to assure positivity of �n, while making MPDATA susceptible to asymptotic linear
analysis as c↗ ∞, [39]. Furthermore, MPDATA itself can be linearized about an arbitrarily
large constant leading to a two-pass scheme that di�ers technically from the basic algorithm in
only two details: at the second iteration, the donor cell �ux function in (5) or (17) takes the
value unity in its two �-arguments, and the pseudo velocities in (8), (14) and (19) replace
each � with unity in all ‘

∑
�’ denominators. This asymptotic form of MPDATA—often

referred to as the ‘in�nite gauge’—is a realization of the classical Lax–Wendro� algorithm
(cf. Section 4 in Reference [39]). For advection of constant-sign �elds it gives solutions
attainable with basic MPDATA, except that it is not sign preserving; Figure 10. However,
since it preserves the solution slope at zero crossings, it has been a preferred option for trans-
porting momenta in �uid models, especially when combined with monotonicity enhancement
[12, 16, 18–20].

4.3. Nonoscillatory option

The basic MPDATA scheme described in Section 2 preserves the sign but not the monotonicity
of the transported variables [9, 39, 40] and, in general, the solutions are not free of spurious
extrema, Figure 11. This is because the antidi�usive velocity is not necessarily solenoidal,
even for a solenoidal physical �ow. In many studies of natural �ows, the preservation of
sign is adequate. However, when required, MPDATA can be made fully monotone [40] by
adapting the �ux-corrected-transport (FCT) formalism [13] to limit the pseudo velocities; cf.

§§For a discussion of some formal issues at �→ 0 see Section 3.2 in Reference [39].
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Figure 10. As in Figure 4 but for the ‘in�nite-gauge’ option of MPDATA.

Figure 11. As in Figure 4 but for a rectangular signal on constant background.

Figure 12. It can be argued [40] that MPDATA is particularly well suited for this adaptation
for several reasons. Firstly, the initial MPDATA iteration is the upwind scheme—a low-order
monotone scheme commonly used as the reference in the FCT design. Secondly, assuring
monotonicity of the subsequent iterations provides a higher-order accurate reference solution
for the next iteration with the e�ect of improving the overall accuracy of the resulting FCT
scheme. Thirdly, because all MPDATA iterations have similar low phase errors characteristic
of the upwind scheme [39], the FCT procedure mixes solutions with consistent phase errors.
This bene�ts the overall accuracy of the resulting FCT scheme (see Figure 5 in Reference
[40] and the accompanying discussion).
The FCT extension for the Cartesian-mesh MPDATA was presented in Reference [40]

together with an algebraic theory of FCT limiting—the algebraic formalism has proven
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Figure 12. As in Figure 11, but for the nonoscillatory-option MPDATA solution.

Figure 13. Leapfrog-trapezoidal-FCT (left), and in�nite-gage-FCT MPDATA (right) solutions after one
revolution of the sphere on unstructured grid.

useful for synchronous FCT where physical bounds imposed on functions of transported
�elds alter the standard limiters of the individual �elds [41, 42]. Recently, a technical sum-
mary of the relevant formulae and details of the implementation as well as 3D benchmark
calculations were presented in Reference [27], in the context of the edge-based unstructured-
grid algorithm; Figure 13 shows two of their solutions. The test case adopted is an ex-
tension of the solid-body rotation problem from Section 3 to three spatial dimensions: A
sphere with radius 15 and constant density 4, placed initially at xo=(25; 75; 75), ro-
tates with angular velocity �=0:1× 3−1=2(1; 1; 1) around a diagonal of the cuboidal domain
[0; 100]× [0; 100]× [0; 100]. The two solutions displayed in the left and right plates are,
respectively, for the FCT leapfrog-trapezoidal scheme [13] and the in�nite-gauge-FCT MP-
DATA. The solutions use an unstructured grid with background spacing 2, roughly a twice
coarser resolution than that employed in the 2D examples discussed earlier. Both solutions
are evaluated after T =10× 2�≈ 556�t, i.e. after one revolution of the sphere around the
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domain diagonal. While both solutions are free of spurious oscillations, statistics of the solu-
tion errors reveal the superior accuracy of the MPDATA result [27]; e.g. the better symmetry
of the MPDATA solution is evident in Figure 13.

5. CONCLUDING REMARKS

The intent of this overview of MPDATA was twofold. First, it was aimed at setting the
background for a series of technical papers collected in the special issue, by providing a self-
contained summary of the theoretical foundations of the approach and a guide to the MPDATA
literature. Second, it was intended to draw the reader’s attention to essential impediments one
may need to account for, when taking a journey from an elementary constant-coe�cient
advection to complete hydrodynamic models.
The body of literature devoted to advection schemes is enormous. In the neverending

quest for the perfect advection scheme, the broader perspective—that �uid models are su-
perior structures whose overall accuracy may depend critically on their weakest link—often
becomes forgotten. As the importance of balancing model errors is gaining increased attention
in the computational literature, cf. References [43–46], it may be worth pointing out that the
philosophy of MPDATA development has been an aggregation of nonlinear stability, associ-
ated with sign-preserving control-volume advection, and second-order accuracy in all aspects
of �uid models.
Over the last two decades, MPDATA has been frequently compared with other transport

schemes, primarily in the context of passive scalar advection. The assessments of MPDATA’s
relative strengths and weaknesses reported in the literature depend very much on the schemes
included in comparisons, choice of test problems, MPDATA’s options, and details of the
implementation. The most common critiques are that the basic MPDATA is too di�usive, while
enhanced MPDATAs are too expensive. The most often acknowledged virtues are MPDATA’s
multidimensionality, robustness, and its underlying conceptual simplicity. These advantages
carry over to complete �uid models, where the relative e�ciency of advection becomes less
important with the increasing complexity of other model physics.
In general, nonoscillatory advection algorithms are much more expensive computationally

than linear schemes [27], and preserving the monotonicity or sign of transported variables is
clearly not cost e�ective for pure advection. In the numerical simulation of �uids, however,
monotone or sign-preserving advection is often not an option but a necessary prerequisite
of solution realizability, cf. References [21, 41, 47]. Furthermore, the relatively high cost of
nonoscillatory advection, does not necessarily imply a more expensive �uid model. Consider,
for example, the bene�ts of MILES for studies of complex turbulent �ows by circumventing
the evaluation of viscous stresses [48], or the accelerated convergence of elliptic solvers due
to a better conditioning of the rhs [49].
The advancement of MPDATA spans over two decades, but is by no means complete.

Recent developments in the areas of implicit turbulence modelling [17, 19, 20], dynamic grid
deformation via continuous mappings [3, 50], and unstructured-grid formulations [27, 29, 30]
call for further research. Moreover, the outstanding issue of synchronized limiting [41, 42]
still awaits general solution for an arbitrary �uid problem.
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